Appendix C

LOCAL LINEARIZATION FOR
THE EULER EQUATIONS

C.1 Derivation of the Flux Jacobians

In two dimensions, the Euler equations can be written as
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In eq. 2.6, the elements of the flux vector are written in terms of the primitive vari-
ables, p, u ., v, e, and p. One can also write them in terms of the conservative

variables. 1. ¢2. g3 , and ¢4 defined as
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From this it follows that the flux Jacobian of £ written in terms of the conservative
variables is
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and in terms of the primitive variables as
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Derivation of the two forms of B = dF/d() is so similar that it is left as an exercise
for the reader.

C.2 The Homogeneous Property of the Euler Equa-
tions

The Euler equations have a special property that is sometimes useful in constructing
numerical methods. In order to examine this property. let us first inspect Euler’s
theorem on homogeneous functions. Consider first the scalar case. If F(u,v) satisfies
the identity

Flau,av) = a" F(u,v) (C.9)

for a fixed n, F'is called homogeneous of degree n. Differentiating both sides with
respect to a and setting a = 1 (since the identity holds for all a), we find
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Consider next the theorem as it applies to systems of equations. If the vector

F(Q) satisfies the identity

F(aQ) = a"F(Q) (C.11)

for a fixed n, F' is said to be homogeneous of degree n and we find

la—F]Q — 1 F(Q) (C.12)

Now it is easy to show, by direct use of eq. C.11, that both £ and F in egs. C.3 and
C.4 are homogeneous of degree 1, and their Jacobians, A and B, are homogeneous
of degree 0 (actually the latter is a direct consequence of the former). This being
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the case, we notice that the expansion of the flux vector in the vicinity of ¢, which,
according to eq. 6.93 can be written in general as,

F = Fut Bu(Q—Qn)+O(R?) (C.13)

can be written
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since the terms &, — A,Q), and F, — B,(@), are identically zero for homogeneous
vectors of degree 1, see eq. C.12. Notice also that. under this condition, the constant
term drops out of eq. 6.94.

As a final remark, we notice from the chain rule that for any vectors ¥ and )
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We notice also that for a homogeneous F' of degree 1, F' = A@) and
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Therefore, if F' is homogeneous of degree 1,
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in spite of the fact that individually [0A/Jz] and @) are not equal to zero.



